7 Steps of LTMO

Mindy Vanderford, Ph.D.

Groundwater Services, Inc.

Credits

Roadmap for Long-Term Monitoring Optimization

Contributors:

Carolyn Nobel, PARSONS

John Anthony, Mitertek

Dave Becker, USACE

USEPA Office of Superfund Remediation and Technology Innovation

Guidance for Monitoring at Hazardous Waste Sites

OSWER Directive No. 9355.4-28

Goals

- Introduce language, concepts and methods central to LTMO
- Define steps common to LTMO analyses
- Determine if and when optimization is appropriate for your program
- Introduce methods available and appropriate for your program

Phases of a Site

Remedy Selection/Monitoring

(engineered processes)

Site
Characterization
(uncertainty reduction)

Long-Term
Monitoring
(natural processes)

7 Steps of LTMO

Implement Plan

Perform Optimization

Choose LTMO Method

Determine the type of evaluation

Decide if site is a Candidate for LTMO

Examine Existing Data

Define and Document Current Program

Components of your Current Monitoring Program

- Conceptual Site Model
- Objectives
- Monitoring Conceptual Model
- Design of Monitoring Plan
- Management Decision Rules

Conceptual Site Model

- Sources
- Analytes
- Matrices
- Potential receptors
- Regulatory framework
- Property use/community issues
- Assumptions/Uncertainties

Objectives

Understand your motivation

- Site Characterization Phase
 - Determine/delineate COCs
 - Quantify COCs
 - Characterize subsurface

Objectives

Understand your motivation

- Monitoring Objectives
 - Evaluate remedy effectiveness
 - Evaluate contaminant migration
 - Evaluate changes in natural resource
 - Comply with regulatory requirements

Objectives

- Temporal state of constituent concentrations
 - Single location over time
 - In or near the remedial zone to monitor remedial performance
- Spatial extent of contaminant distribution
 - Migration of constituents
 - Potential receptors

Monitoring Conceptual Model

Identifies the relationship between site activity and outcome.

(Hint: Its Science.)

Refine Objectives to be consistent with Monitoring Conceptual Model

Monitoring Conceptual Model

- Monitoring hypothesis
 - COC concentrations are changing with time.
- Monitoring question
 - What is changing?
 - How fast is it changing?
 - Where is it changing?

Monitoring Conceptual Model

- Collect data to evaluate hypothesis
- Hypothesis testing
 - Analyze data using appropriate methods/statistics
- Scientific Management Decision Point
 - Document decision with data/weight of evidence.

Design of Current Monitoring Program

- What data have been collected and why?
 - Analytical methods
 - Detection limits
- How are data collected?
- Where have data been collected?
- How have data been analyzed?
- How is the dataset managed?
- How much does this cost?
- Who is paying for this?

Management Decision Rules

- Identify actions taken and criteria for actions taken.
- Have monitoring objectives been met?
- How has the monitoring program been altered through time and why.

Regulatory/Community Issues

- Is the site moving to a different regulatory status/phase?
- What are the long-term goals of property re-use?
- What is my current relationship with stakeholders?
- How can LTMO improve the current stakeholder relationship/property re-use?

Summary

- Conceptual Site Model
- Objectives
- Monitoring Conceptual Model
- Design of Monitoring Plan
- Management Decision Rules

7 Steps of LTMO

Implement Plan

Perform Optimization

Choose LTMO Method

Determine the type of evaluation

Decide if site is a Candidate for LTMO

Examine Existing Data

Define and Document Current Program

Acquire and Process Data

- Data acquisition and availability
- Data format
- Data reduction

Checklist (Important stuff)

- Site description/history
 - RFI, CSM, ROD
- Historical COC data
 - Investigation and monitoring reports
- Site hydrology/geology
 - RFI, CSM

Checklist (Important stuff)

- Description of current monitoring program
- Location coordinates (survey, GPS)
 - Wells and Property boundaries
 - Sources and Receptors
 - Surface water, Roads

Checklist (Important stuff)

- Construction diagrams
- Regulatory context, cleanup goals
 - Risk based goals
- Location of potential receptors
 - Risk assessments

Checklist (Useful stuff)

- Logistical and policy issues
 - Stakeholders, property owners
- Site features
 - Aerials, AutoCad, GIS base maps
- Historic hydrology
- Geochemistry
- Costs and budgets

Checklist

More important than you think

- Current property use
- Future property use
- Pending sale/re-use/litigation

Data Format

Clean-up your data!

- Hunt, gather, beg, create
- Convert to electronic files
- Database format
- Identify spurious points/artifacts
- Data deficiencies?

Data Reduction

- How are data flags handled?
 - J flags
 - Non-detect results
- How are duplicates interpreted?
- Dilution factors
- Data consolidation
- Missing detection limits?

Summary

- Gather Reports
- Organize Data (Electronic format)
- Review Data
- Data Reduction/Consolidation
- Expensive (\$\$\$)

7 Steps of LTMO

Implement Plan

Perform Optimization

Choose LTMO Method

Determine the type of evaluation

Decide if site is a Candidate for LTMO

Examine Existing Data

Define and Document Current Program

Is my site a Candidate?

- Is the site investigation complete?
- Minimum Data requirements fulfilled?
- Remediation status consensus?
- Budget and labor considerations?

You won't have this site to investigate anymore

Is my site a Candidate?

- Is the site investigation complete?
 - Source identified?
 - Plume delineated?
 - Vertical
 - Horizontal

Is my site a Candidate?

- Is the site investigation complete?
 - COC's identified?
 - Hydrology known/modeling complete?
 - Conceptual Site Model complete?
 - Receptors Identified

Is my site a Candidate?

Data requirements fulfilled?

 Temporal: > 4 to 6 sample events, 8 events suggested for significance for some statistical tests

Is my site a Candidate?

- Data requirements fulfilled?
 - Spatial: > 6 to 15 monitoring locations
 - Housekeeping:
 data organized and complete

Is my site a Candidate?

- Remediation status confirmed?
 - Stakeholders agree
 - Intensive remedies completed
 - No further construction
 - Pump and Treat or Natural
 Attenuation remedies on-going

Things to consider

- Effort and budget to perform optimization
- Technical capabilities of team
- Resistance to implementation
- Potential benefits vs. cost
- Deficiencies in current monitoring program
- Likelihood of further remediation

Summary

- The site investigation is complete.
- Minimum Data requirements fulfilled.

Remediation status consensus.

Budget and labor adequate.

Not so tricky, now!

7 Steps of LTMO

Implement Plan

Perform Optimization

Choose LTMO Method

Determine the type of evaluation

Decide if site is a Candidate for LTMO

Examine Existing Data

Define and Document Current Program

Evaluation Strategies

Qualitative

Quantitative

Evaluation Strategies

Qualitative evaluations based on professional judgment, intimate knowledge of site, decision rules, heuristic methods

Evaluation Strategies

- Geology/Hydrology
- Fate and transport of COCs
- Monitoring objectives, migration pathways and receptors
- History and regulatory framework

Evaluation Strategies

Decision Logic

- Monitoring Well important for:
 - Vertical/horizontal delineation
 - Background water quality
 - Proximity to source/receptor
 - Regulatory compliance

Good News

Qualitative Evaluations

- Context specific, multiple factors, includes intuitive, less tangible information
- Good for including regulatory and community issues

REALITY

Less-Good News

- Problem if stakeholders do not agree
- Consultant dependent
- May not reveal data inadequacies, may carry over biases
- Specific personnel required

Evaluation Strategies

Quantitative evaluations based on statistical, mathematical, modeling or empirical evidence

Evaluation Strategies

- Trend analysis
- Geo-statistics
- Information Weighting

Evaluation Strategies

- Modeling studies and simulations
 - Projected concentrations
 - Projected attenuation
- Algorithms for temporal sampling

Good News

- Bring stakeholders together with quantitative analysis
- Specific justification for action
- Can highlight data deficiencies, mis-interpretations, uncertainty.

Less-Good News

- More rigorous data requirements
- Cost
- Time and effort
- Technical expertise
- Junk in → Junk out

Evaluation Strategies

Qualitative Quantitative

(Both needed)
Independent Review?

7 Steps of LTMO

Implement Plan

Choose LTMO Method

Determine the type of evaluation

Decide if site is a Candidate for LTMO

Examine Existing Data

Define and Document Current Program

LTMO Methods

- Balance qualitative and quantitative methods
- Time, effort, skill set and cost
- Stakeholder consensus
- Appropriate to size, complexity, dataset and risk of site

LTMO Guidance

Guidance Documents:

- Naval Facilities Engineering Service Center
- AFCEE
- DOD
- USEPA

LTMO Team

- Geology/hydrology
- Statistical
- Data management
- Regulatory

- Decision logic
- Statistical trend analysis
- Statistical significance testing
- Interpolation
- Mathematical Optimization

LTMO Tools

Decision logic

"If the concentration is increasing, then sample semi-annually."

- Statistical trend analysis
 - Linear Regression
 - Mann-Kendall
 - Sen's, Mann-Wilcoxon

- Statistical significance testing
 - Student's T-test
 - Sequential T-test
 - Power analysis

- Interpolation
 - Kreiging
 - Delaunay method
 - Mesh creation

Mathematical Optimization

Branch of computational science seeking a 'best' result for any question that can be answered by a numerical value.

Techniques:

- Simulated annealing
- Genetic algorithms
- Evolutionary strategies

Mathematical Optimization

Relatively new field (~1970's)

Computational and Programming challenges

Key Terms:

minimise
$$f(\mathbf{x}), \quad \mathbf{x} = (x_1, x_2, \dots, x_n)^T$$

subject to $c_i(\mathbf{x}) = 0, \quad i = 1, 2, \dots, m'$
 $c_i(\mathbf{x}) \geq 0, \quad i = m' + 1, \dots, m.$

Objective Function – Value to be optimized Decision Variables – Parameters subject to change Constraints – Restrictions on allowed parameters

LTMO Methods

- Cost Effective Sampling
- Parsons Three Tiered
- MAROS (Monitoring and Remediation Optimization Software)
- GTS (Geostatistical Temporal/Spatial Optimization Algorithm)
- Mathematical Optimization Methods

Summary

- Balance qualitative and quantitative methods
- Balance time, effort and cost with size, complexity, data and risk
- Guidance available
- Many tools and methods available

7 Steps of LTMO

Define and Document Current Program

Perform Optimization

Expected Results

- Spatial Locations
 - Remove wells from program
 - Addition of wells to characterize high uncertainty
- Temporal Frequency
- Different results for different COCs
- Different results for different GW units

Perform Optimization

Bonus Results

- Change in site conceptual model
- Change in monitoring objectives
- Change in sampling or analytical methods
- Evaluate effects of remediation activities

Perform Optimization

Cost

- Small site, stakeholder agreement, uncomplicated hydrology and constituents
 - \$2,500 \$5,000
- Larger site, stakeholder skepticism, uncomplicated hydrology
 - **-** \$5,000 **-** \$15,000
- Larger site, stakeholder hostility, complicated hydrology, multiple units, legal issues
 - **-** >\$25,000

7 Steps of LTMO

Assessment and Implementation

- Reality Check
- Compare with original monitoring program
- Compare across COCs
- Cost savings review
- Stakeholder review of recommendations

Stakeholder Review

- Decision Document
 - LTMO Report
 - Response Action Completion Report
- Consistent with regulations and property use
- Modify SAP's, QAPP's, etc.
- Modify permits, and institutional controls.
- Vendor contracts/services

Costs

- Decision Document (\$)
- Modification of documents (\$\$)
- Modify permits, and institutional controls (\$\$)
- Potential savings ~ \$750 per sample

Review

- Flexible decision documents
- Periodic re-evaluation
 - Acquisition of statistically significant sample size
 - Change in well status (i.e. < MCL)
- Property transactions

7 Steps of LTMO

Review

Implement Plan

Perform Optimization

Choose LTMO Method

Determine the type of evaluation

Decide if site is a Candidate for LTMO

Examine Existing Data

Define and Document Current Program

